Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization

نویسندگان

  • Han Li
  • Qi-Zhi Yao
  • Yu-Ying Wang
  • Yi-Liang Li
  • Gen-Tao Zhou
چکیده

Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomineralization and Biomimetic Synthesis of Biomineral and Nanomaterials

Biominerals and biomaterials with unique microstructure are mainly consisted of organic and inorganic materials, and exhibit excellent biological and mechanical properties. The formation mechanism of biomineral indicated that the organic matrixes have an important influence on the morphology and structure of the inorganic matrix material in the process of biomineralization. However, the biomine...

متن کامل

Vitamin C inhibits crystallization of struvite from artificial urine in the presence of Pseudomonas aeruginosa.

BACKGROUND Formation of struvite stones is associated with urinary tract infection by urease-producing bacteria. Biogenic crystal growth in natural and synthetic materials is regulated by the action of inhibitors, ranging from small ions, molecules to large macromolecules. MATERIALS AND METHODS We report the dynamics of in vitro crystallization of struvite in presence of vitamin C in syntheti...

متن کامل

Biogenic synthesis of Copper nanoparticles using aquatic pteridophyte Marsilea quadrifolia Linn. rhizome and its antibacterial activity

The spread of contagious diseases and the increase in the drug resistance amongst pathogens has enforced the researchers to synthesize biologically active nanoparticles. Development of eco-friendly practice for the synthesis of nanoparticles is growing bit by bit in the field of nano-biotechnology. The present investigation outlines the development of a method to biosynthesize copper nanopartic...

متن کامل

Investigation on Microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles

   The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. This study was designed to examine the structural chemistry of silver nanoparticles (AgNPs) using both conventional heating and microwave irradiation methods.To o...

متن کامل

Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization

Many biomineralization systems start from transient amorphous precursor phases, but the exact crystallization pathways and mechanisms remain largely unknown. The study of a well-defined biomimetic crystallization system is key for elucidating the possible mechanisms of biomineralization and monitoring the detailed crystallization pathways. In this review, we focus on amorphous phase mediated cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015